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Modified Inverse Iteration Method Using the Side Condition
and The Step Length

Case I: Distinct Natural Frequencies

In-Won Lee*, Man-Cheol Kim** and A. R. Robinson***
(Received April 24, 1995)

An efficient numerical method which can calculate the natural frequencies and mode shapes

for very large structural systems is presented. This method applies the accelerated Newton­

Raphson technique to eigenproblems. If eigenvalues are not multiple, this method can calculate

the natural frequencies and mode shapes without a numerical instability which may be often

encountered in the inverse iteration method with shift. The efficiency of this method is verified

by comparing convergence and solution time for numerical examples with those of the well­

known methods such as, the subspace iteration method and the determinant search method.
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1. Introduction

The analysis of a number of physical problems

requires the solution of an' eigenproblem. It is

therefore natural that with the increased use of

computational methods operating on discrete

representations of physical problems, the develop­

ment of efficient techniques for the calculation of

eigenvalues and eigenvectors has attracted much

attention. In particular, the use of finite element

techniques can lead to large systems of equations,

and the efficiency of an overall response analysis

eigenvectors.

The determinant search method (Meirovitch,

1980; Wilkinson, 1965; Bathe, 1982; Bathe, et.

al., 1973a; Bathe, et. al., 1973b) and the subspace
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iteration method (Meirovitch, 1980; Wilkinson,

1965; Bathe, 1982; Bathe, et. al., 1973a; Bathe, et.

al., 1973b; Bathe, et. al., 1972; Bathe, et. al., 1980;

Wilson, et. al., 1983) have been mainly used for

solving eigenproblems. The determinant search

method IS a method which combines the

polynomial iteration method, the Sturm-sequence

method and the vector iteration method. This

method can be efficiently used in the analysis of

systems with small bandwidth, since the matrix

decomposition must be executed at each step.

(Bathe, et. al., 1973b) The subspace iteration

method is a method which combines the simulta­

neous inverse iteration method and the Rayleigh­

Ritz method. This method has been used mostly,

but the following shortcomings have been iden­

tified after extensive use of the method. (Bathe, et.

al., 1983; wilson, et. al., 1983)

1) When the inverse iteration with shift is

applied to the method to increase convergence,

the shift value may be close to exact eigenvalue

and numerical instability may be encountered

during triangularization .

2) One considering the solution of eigenvalue

problem for a relatively large number of
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eigenpairs, the solution time used in the subspace
iteration method rises rapidly as the number of
eigenpairs considered is increased. It is due to a

number of factors that can be neglected when the
solution of only a few eigenpairs is required.

CD When p(p: the number of eigenkpairs to be
required) is large, the convergence rate of the

eigenvector, epp, can be close to one.
@ If q (q: the number of starting iteration

vectors) is increased, the number of operations
per subspace iteration is increased significantly.

® If q is increased, the convergence of the

smallest eigenvalues is generally achieved in a few

iterations, and the converged vectors plus (p+ 1)
th to qth iteration vectors are only included in the

additional iterations to provide solution stability
and to accelerate the convergence of the large
required eigenvalues.

Lee and Robinson (Lee, et. al., 1979) pro­

posed an efficient solution method in order to
improve numerical stability and increase conver­

gence. To further improve the method, the acceler­

ated Newton-Raphson technique is proposed
here. (Kim, et. al., 1994) As examples for calcu­

lating eigenvalues and the corresponding mode
shapes, one plane frame and one three­

dimensional building frame structure are anal­
yzed to prove the efficiency of the proposed
method.

2. Method of Analysis

Consider a generalized eigenvalue problem
such as,

where K and M are the stiffness matrix and

mass matrix of order n, respectively. M is
assumed to be positive definite and K positive
semidefinite. It is the jth natural frequency squar­
ed and epj the corresponding mode shape.

Let us assume that initial approximate solution
of Eq. (1), Il/O) and ep/Ol, are available. Denote an

approximate eigenvalue and the corresponding
eigenvector after k iterations by Il/ k) and epjlkl
(k=O, 1, 2, ...). Then, we have

(2)

where the residual vector, ri". is not generally
zero because of substitution of approximate val­

ues into Eq. (1). In order to get a solution conver­
ged to the eigenvalue and the corresponding

eigenvector of the system, the residual vector
should be removed. Let us apply the Newton­

Raphson technique for this purpose.

rjk+11=O
= Kepjk+l) -/ty+ lI Mepjk+l) (3)

where

Iljk+!)=IlY)+LI/tY) (4)

epjk+!)= epjkl +LIepjk) (5)

Substituting Eqs. (2), (4) and (5) into Eq. (3)

and neglecting the higher order term, LIllY)
MLIepjkl, we get

(K - IlY) M) LIepY I - LIllY) Mepjkl
= - rY) (6)

where LIllY) and LIepjk) are unknown In­

cremental values of IlY) and epjkl.
Because there are only n equations with n + 1

unknowns which are LIllY) and n components of
LIepjkJ, a side condition must be introduced for the

solution of Eq. (6). The side condition to arrive at

a set of n +1 equations with n +1 unknowns is

This is equivalent to saying that the allowable
changes in the approximate eigenvector are orth­

ogonal to the latest approximate eigenvector with
respect to the mass matrix. This prevents unlim­

ited drift in the eigenvector which is, after all, not
determinded in magnitude. Error for epjk+ll,
8Y+!I, represents the angle between epjk+lI and epj.

Writing Eqs. (6) and (7) in matrix form, we get

[
K -- IlYI M - MepY 1

] {LIepjk)}
- (epjk») T M ° LIllY I

= - {~Y)} (8)

"""""'-_-L.....J- ---+ 4> j

Fig. 1 The side condition (if M = I)
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The coefficient matrix for the incremental val­

ues is of order n +1 and symmetric. If tl/ are not

multiple, it is nonsingular.(Lee, et. aI., 1979) The

case of multiple or close eigenvalues is treated in

the succeeding paper.

The above algorithm using the Newton­

Raphson technique, despite of its rapid conver­
gence, is not efficient, since a new coefficient

matrix has to be formed and refactorized in each

iteration step, The complete elimination proce­

dure in each iteration may be avoided by using

the modified Newton-Raphson technique in Eq.

(8).

[
K - tl5°) M - M¢)k)] {L)¢)k)}
- (¢;kl) T M 0 L)tlY)

= -{~Y)} (9)

The coefficient matrix in Eq. (9) using the

modified Newton-Raphson technique can be

written as (Lee, et. aI., 1979)

kY+I)= h2kY ) (10)

OY+1)=hBjk) (11)

where ki(k) = Itli ~:P) I, and h Itli - tl5°) I=mfx tl,-tl501 .
i~J

BJ'k l represents the angle between ¢/kl and ¢i'
that is, an error in ¢p l . As shown in Eqs. (10)

and (11). the convergence rate of eigenvalue,

kPI, is quadratic in h and that of eigenvector,

BY), linear in It.

(1 JOI& jO) a.y)& jl)

,...----~ r-
t,J

{
Ikl}Y(..1:)::::: _ rJ

J ()

Yj

Fig. 2 The accelerated Newton-Raphson technique

Once the submatrix K - tl5°) M is decomposed
into the LDL T (L: lower triangular matrix, D:
diagonal matrix), a small number of operations

are required for the solution of Eq. (9) in the

succeeding iterations, since the vector M4'5k
) in the

coefficient matrix is only changed in each itera­

tion. However, due to negligence of the small

nonlinear term (tlY+ 1I - tl50I) ML)¢5k l , the conver­

gence is lower. Thus, the number of iterations for

a solution is increased. The above scheme has

been presented by Lee and robinson. (Lee, et. aI.,

1979)

To further improve the eigenvector, the acceler­

ated scheme is proposed here, (Kim, et. al., 1994)
that is,

(12)

aYI is a value to minimize the norm of the resid­

ual vector. It can be evaluated by using the least

square technique as follows;

a~k) {( rjk+lI) TrY+ 1)} =0 (13)

(kl __ (J¢)kl) T(K - }.)k+l l M) (K - }.)k+1I M) ¢)kl
a; - (J¢)kl)T(K - }.;k+ll M) (K - }.;k+1I M) J¢)kl

(14)

Note that tlY+ 1I and L)¢5k l have been obtained

by Eq. (9).

If the order of the system is n, and the ban­

dwidths of the stiffness matrix and mass matrix

are m; and me. the number of operations for

evaluating aY) in the first iteration step is 2nm;
+2nmb+7n+1. This is large compared to

5nma+2mnb+6n which is required in each

iteration step in Eq. (9). However, only the

number of 712+ 1 operations is required to evalu­

ate aY) after the 2nd iteration, which is negligible,

because we use computational results in the previ­

ous step. Thus, solution time of the proposed

method is decreased by improving convergence.

Some of the eigenvalues and corresponding

eigenvectors of interest may be missed when the

initial approximations are not suitable. ln order

to check whether this occurs, the Sturm-sequence

property (Bathe, 1982) may be applied. A

computed eigenvalue can be checked using the

above property with negligible extra computa­

tion, since the decomposition of the matrix (K
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subspace iteration method

,~ Yes

I Solve Eq.(5) for ~j""

No

"nK - A'" M~'" II NoII .I j 2> 10 I

IIq~" II, -,

--_jJr~s
Solve Eq. (9) for !lA';' and Mj"

Solve Eq. (4) for AI;'"

Solve Eq. (14) for uj"

[ Solve Eq. (12) for ~j"",.
SMisty required error norm '.

Solve Eq.(9) for !lA';' and !l~j"

SolveEq.(4)for

.-
Si;jlistYrequired error norm No

!'(es .r'END"'~
'--.... .../

Yes

Fig. 3 Algorithm for the proposed method

(16)

- 1\5°) M) has already been carried out during the

procedure for the solution of Eq, (9). If some

of the eigenvalues of interest are detected to be

missing, the solutions can be found by the

proposed method.

3. Numerical Examples

The plane frame and the three-dimensional build­

ing from which K. J. Bathe used (Bathe, et. al.,

1972) are analyzed to verify the efficiency of the

proposed method. When the predetermined error

norm is I.E-09, the structures are analyzed by

three different methods; the subspace iteration

method, the determinant search method and the

proposed method, where the error norm (Bathe,

et. a!', 1982) is computed by

05)

Each convergence rate and solution time (CPU'

time) used to calculate IS eigenpairs are compar­

ed. Intermediate results with relative error of I.

E-Ol in the subspace iteration method are used as

initial values of the proposed method. The rela­

tive error (Bathe, et. al., 1982) in the subspace

iteration method is computed as follows

I
'(k+l) '(k) I

I . - I\j -I\j
re atrve error-' I\jk+l)'-

a]k) is applied to the eigenpair whose error

norm is over I.E-Ol. All runs are executed in the

IRIS4D-20-SI7 with 10 Mips and 0.9 Mflops.

3.1 Plane frame structure
The plane frame structure which has 10 stories

and 10 bays shown in Fig. 4 consists of 210 beam

elements, 121 nodes and 330 degrees-of-freedom.

The mean half-bandwidth of both the stiffness

matrix and mass matrix is 30. a]k) is applied to the

13th, the 14th and the 15th eigenpair with error

norm exceeding 1.E-O1.
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Solution times for three methods are summar­

ized in Table I. If we let the solution time for the

proposed method be 1, it takes 2.7 times for the

subspace iteration method, 2.3 times for the deter­

minant search method. For each solution method,

the convergence of eigenpairs to which a5 k l is

applied is depicted in Fig. 5 to Fig. 7. According

to them, it is obvious that the convergence of the

proposed method is superior to that of the sub­

space iteration and of the determinant search

method. The absolute values of aY) calculated in

the above numerical example range from 0.85 to

1.5.

3.2 Three dimensional building frame

Three dimensional building frame shown In

Fig. 8 consists of 191 beam elements, 100 nodes

and 468 degrees-of-freedom. The mean half­

bandwidth of both the stiffness matrix and mass

matrix is 91. aY I is applied to the 12th, the 14th

and the 15th eigenpair with error norm exceeding

I.E-O1.

1.~O2

E ,,-Of

~
1.~O6,

t ,,-08 <,
'"

u-r»

6 8 '0

Iteration Number

t

105 m

" "
ro

.
L.., _

-
610m ~

EfTor Lim'il
SvblpClC' ltrra.tWn Mdhod.
Ddnm.in4nl S,arch Illlhod
Propoud Jldlwd.

Plan of Building

x

~
ear "'--T

.- --
. 24.4 m

Front •. _y_

Z(il-.... y

•

6 B 10

Iteration Number

Convergence of the 15th eigenpair

Elevation of Building

'l
r-,--,..-t-+----, 22.

185
m

I

" ..

11-00

1.-02

E
1.-04

C

'" ,.-06,
C

t 1,-08

'" ..CD.
',-'0

,.-12

Fig. 7

t.~ y
x

Fig. 6 Convergence of the 14th eigenpair

Ef'rtrr £imi!
Sub"Po.c. 1t,..I'diD'n. Meth.od.
D.t.rml.n,4nl S.arch Mdh.od.
PToposed. Al.th.od

Solution Time

(ratio)

, .
Iteration Number

Convergence of the 13th eigenpair

Solution time (CPU time, sec) of plane

frame

Methods

E ,.~04 "I
C

'" 1.-06 -l, ,
C

~ 1,-08 .....
, (})
,

.: ~
c'

Fig. 5

A = 0.2787 m' I = 8.631x 10.3 m'

E = 2.068x IOJO Pa p = 5.l54x 102 kg/ m'

Fig. 4 Plane frame structures
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Table 1

Fig. 8 Three dimensional building frame

Column in Front Building: A ~ 0.2787 m', I ~ 8.631x 10-' m'
Column in Rear Building : A~ 0.3716m'. I ~ 10.789xlO·' m'

All Beams into x -Direction : A ~0.6096m'. I ~ 6.473x 10" m'

All Beams into y - Direction: A -x:0.2787 m' , I ~ 8.631X lO·' m'

E ~ 2.068x 10" Fa, p ~ 5.l54x 10' kg/ m'

155.4(2.7)

1:13.5(2.3)

Proposed Method

Determinant Search

Method

58. 10.00)
~~~--~~~~._~._~~.~~---

Subspace Iteration Method
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Table 2 Solution Time (CPU time, sec) of three

dimensional building Frame

Solution times for three methods are summar­

ized in Table 2. If we let the solution time for the
proposed method be I, it takes 3.3 times for the

Methods
Solution Time

(ratio)

subspace iteration method, 5.1 times for the deter­

minant search method. For each solution method,
the convergence of eigenpairs to which aY) is
applied is presented in Fig. 9 to Fig. II. We can
see that the convergence of the proposed method

is superior to that of the subspace iteration and of
determinant search method. The absolute value of

aY) calculated in the above numerical example

has the value of 0.85 to 1.02.
Proposed Method

Subspace Iteration Method

27.4 0.00)

723.9(3.3) 4. Conclusions

Fig. 9 Convergence of the 12th eigenpair
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This paper proposes an efficient solution

method using the accelerated Newton-Raphson
technique for eigenproblems. As shown in numer­

ical examples of Sec. 3, characterstics of the

proposed method are identified as follows;

CD Since each eigenpair is obtained indepen­
dently, an eigenpair is not affected by the

eigenpairs previously calculated.
@ Even a shift near an exacet eigenvalue

occurs, numerical instability problems are not

encountered during traingularization.
@ Demerits of the general methods, such as

much solution time and slow convergence, can be

removed by using the proposed method.
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